Back to Search Start Over

A newly developed hybrid method on pavement maintenance and rehabilitation optimization applying Whale Optimization Algorithm and random forest regression.

Authors :
Naseri, Hamed
Jahanbakhsh, Hamid
Foomajd, Amirabbas
Galustanian, Narek
Karimi, Mohammad M.
D. Waygood, E.O.
Source :
International Journal of Pavement Engineering. 2023, Vol. 24 Issue 2, p1-13. 13p.
Publication Year :
2023

Abstract

Developing an accurate pavement prediction model plays a dominant role in pavement M&R optimization. Despite employing different robust machine learning techniques to predict pavement conditions, these methods have some weaknesses in synchronising with exact optimization algorithms. The main contribution of this study is to propose a novel method for optimizing the pavement M&R plan with high accuracy. Contrary to conventional approaches, a robust prediction algorithm, Random Forest Regression (RFR), is applied to predict the pavement International Roughness Index (IRI). In addition, Multiple Linear Regression (MLR) is employed to assess the performance of the proposed technique in terms of IRI prediction accuracy. Whale Optimization Algorithm (WOA), as a powerful metaheuristic optimization algorithm, is utilised to obtain the optimal solution to the pavement M&R optimization problem. RFR is run as an internal part of the WOA in the introduced method. Furthermore, Genetic Algorithm (GA) is used to examine the performance of the proposed approach in finding the optimal solution. The RFR results conclude a more accurate prediction of IRI than MLR based on all machine learning performance indicators. Furthermore, the newly developed hybrid model significantly outperforms GA in finding the optimal and cost-effective solution to the M&R optimization problem. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10298436
Volume :
24
Issue :
2
Database :
Academic Search Index
Journal :
International Journal of Pavement Engineering
Publication Type :
Academic Journal
Accession number :
174878535
Full Text :
https://doi.org/10.1080/10298436.2022.2147672