Back to Search Start Over

Variable Hardy–Lorentz martingale spaces Hp(·),q(·)$\mathcal {H}_{p(\cdot),q(\cdot)}$.

Authors :
Lu, Jianzhong
Ma, Tao
Source :
Mathematische Nachrichten. Jan2024, Vol. 297 Issue 1, p8-37. 30p.
Publication Year :
2024

Abstract

Let (Ω,F,P)$(\Omega ,\mathcal {F},\mathbb {P})$ be a complete probability space and let p(·),q(·):[0,1]→(0,∞)$p(\cdot),q(\cdot):[0,1]\rightarrow (0,\infty)$ be two variable exponents. In this paper, we investigate several new variable Hardy–Lorentz martingale spaces associated with the variable Lorentz spaces Lp(·),q(·)(Ω)$\mathcal {L}_{p(\cdot),q(\cdot)}(\Omega)$, which are defined by nonincreasing rearrangement functions. To be precise, we first formulate the atomic decomposition theorems for these Hardy–Lorentz martingale spaces, and then establish martingale inequalities among them with the help of the boundedness of a σ‐sublinear operator. Furthermore, we prove the boundedness of fractional integrals on variable Hardy–Lorentz martingale spaces Hp(·),q(·)(Ω)$\mathcal {H}_{p(\cdot),q(\cdot)}(\Omega)$. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0025584X
Volume :
297
Issue :
1
Database :
Academic Search Index
Journal :
Mathematische Nachrichten
Publication Type :
Academic Journal
Accession number :
174779637
Full Text :
https://doi.org/10.1002/mana.202200534