Back to Search Start Over

Energy and cost management of different mixing ratios and morphologies on mono and hybrid nanofluids in collector technologies.

Authors :
Hai Tao
Aldlemy, Mohammed Suleman
Alawi, Omer A.
Kamar, Haslinda Mohamed
Homod, Raad Z.
Mohammed, Hussein A.
Mohammed, Mustafa K. A.
Mallah, Abdul Rahman
Al-Ansari, Nadhir
Yaseen, Zaher Mundher
Source :
Engineering Applications of Computational Fluid Mechanics. Dec2023, Vol. 17 Issue 1, p1-19. 19p.
Publication Year :
2023

Abstract

The flat-plate solar collector (FPSC) three-dimensional (3D) model was used to numerically evaluate the energy and economic estimates. A laminar flow with 500 ≤ Re ≤ 1900, an inlet temperature of 293 K, and a solar flux of 1000W/m² were assumed the operating conditions. Two mono nanofluids, CuO-DW and Cu-DW, were tested with different shapes (Spherical, Cylindrical, Platelets, and Blades) and different volume fractions. Additionally, hybrid nanocomposites from CuO@Cu/DW with different shapes (Spherical, Cylindrical, Platelets and Blades), different mixing ratios (60%+40%, 50%+50% and 40%+60%) and different volume fractions (1 volume%, 2 volume%, 3 volume% and 4 volume%) were compared with mono nanofluids. At 1 volume% and Re = 1900, CuO-Platelets demonstrated the highest pressure drop (33.312 Pa). CuO-Platelets achieved the higher thermal enhancement with (8.761%) at 1 vol.% and Re = 1900. CuO-Platelets reduced the size of the solar collector by 25.60%. Meanwhile, CuO@Cu-Spherical (40:60) needed a larger collector size with 16.69% at 4 vol.% and Re = 1900. CuO-Platelets with 967.61, CuO -- Cylindrical with 976.76, Cu Platelets with 983.84, and Cu-Cylindrical with 992.92 presented the lowest total cost. Meanwhile, the total cost of CuO -- Cu -- Platelets with 60:40, 50:50, and 40:60 was 994.82, 996.18, and 997.70, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19942060
Volume :
17
Issue :
1
Database :
Academic Search Index
Journal :
Engineering Applications of Computational Fluid Mechanics
Publication Type :
Academic Journal
Accession number :
174742052
Full Text :
https://doi.org/10.1080/19942060.2022.2164620