Back to Search Start Over

Novel Formulas for B -Splines, Bernstein Basis Functions, and Special Numbers: Approach to Derivative and Functional Equations of Generating Functions.

Authors :
Simsek, Yilmaz
Source :
Mathematics (2227-7390). Jan2024, Vol. 12 Issue 1, p65. 20p.
Publication Year :
2024

Abstract

The purpose of this article is to give relations among the uniform B-splines, the Bernstein basis functions, and certain families of special numbers and polynomials with the aid of the generating functions method. We derive a relation between generating functions for the uniform B-splines and generating functions for the Bernstein basis functions. We derive some functional equations for these generating functions. Using the higher-order partial derivative equations of these generating functions, we derive both the generalized de Boor recursion relation and the higher-order derivative formula of uniform B-splines in terms of Bernstein basis functions. Using the functional equations of these generating functions, we derive the relations among the Bernstein basis functions, the uniform B-splines, the Apostol-Bernoulli numbers and polynomials, the Aposto–Euler numbers and polynomials, the Eulerian numbers and polynomials, and the Stirling numbers. Applying the p-adic integrals to these polynomials, we derive many novel formulas. Furthermore, by applying the Laplace transformation to these generating functions, we derive infinite series representations for the uniform B-splines and the Bernstein basis functions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22277390
Volume :
12
Issue :
1
Database :
Academic Search Index
Journal :
Mathematics (2227-7390)
Publication Type :
Academic Journal
Accession number :
174722008
Full Text :
https://doi.org/10.3390/math12010065