Back to Search Start Over

Microwave-Assisted Hydrothermal Synthesis of Pure-Phase Sodalite (>99 wt.%) in Suspension: Methodology Design and Verification.

Authors :
Rouchalová, Kamila
Rouchalová, Dana
Čablík, Vladimír
Matýsek, Dalibor
Source :
Materials (1996-1944). Jan2024, Vol. 17 Issue 1, p269. 23p.
Publication Year :
2024

Abstract

Despite numerous studies focused on the hydrothermal (HT) synthesis of fly ash zeolites (FAZs), this method still has many limitations, the main of which is the low yield of zeolites. Hydrothermally synthesized zeolites are typically multiphase and exhibit low purity, which limits their applicability. Pure-phase zeolites have been primarily prepared from filtrates after alkaline mineralization of fly ashes, not directly in suspension. In addition, the published methodologies have not been tested in a wider set of samples, and thus their reproducibility is not confirmed. The aim of the study is to propose a reproducible methodology that overcomes the mentioned limitations. The influence of the Si/Al ratio (1.3:1–1:2), the type and concentration of the activator (2/4 M NaOH/KOH/LiOH), the reagent (30% LiCl), the duration (24–168 h), and the temperature (50–180 °C) of the synthesis phases were studied. The sequence of the synthesis phases was also optimized, depending on the type of heat transfer. The fly ashes were analyzed by wavelength-dispersive X-ray fluorescence (WD XRF), flame atomic absorption spectrometry (F-AAS), and X-ray diffraction (XRD). The energy intensity of the synthesis was reduced through the application of unique microwave digestion technology. Both microwave and combined (microwave and convection) syntheses were conducted. FAZs were identified and quantified by XRD analysis. This study presents a three-stage (TS) hydrothermal synthesis of pure-phase sodalite in suspension. Sodalite (>99 wt.%) was prepared from nine fly ashes under the following conditions: I. microwave phase: 120 °C, 150 min, solid-to-liquid ratio (S/L) 1:5, Si/Al ratio 1:1.5, and 4 M NaOH; II. convection phase: 120 °C, 24 h, S/L 1:40, and the addition of 30 mL of 30% LiCl; and III. crystallization: 70 °C for 24 h. The formation of rhombododecahedral sodalite crystals was confirmed by scanning electron microscope (SEM) images. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
1
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
174719415
Full Text :
https://doi.org/10.3390/ma17010269