Back to Search Start Over

Estimation of the Transverse Wave Velocity in Siliceous Carbonate Reservoirs of the Dengying Formation in the Gaoshiti–Moxi Area, Sichuan Basin, China.

Authors :
Xue, Lian
Zhu, Zhengping
Weng, Xuebo
Pan, Renfang
Shi, Jinxiong
Source :
Energies (19961073). Jan2024, Vol. 17 Issue 1, p135. 15p.
Publication Year :
2024

Abstract

Siliceous minerals of the Dengying Formation in the Gaoshiti–Moxi area in the central Sichuan Basin exhibit four types of quartz crystals (cryptocrystalline quartz, chalcedony, microcrystalline quartz, and megacrystalline quartz) and three structural types: cryptocrystalline, microcrystalline, and mosaic (laminated mosaic, window-hole interrupted mosaic, and arc-laminated mosaic). Siliceous minerals have a great influence on the storage performance of the reservoirs in the Dengying Formation. According to the petrophysical parameters of the Dengying Formation and porosity intersection diagrams, the siliceous dolomite and the reservoirs have low impedance characteristics, which makes it difficult to distinguish between them and leads to difficulties in the characterization and prediction of the reservoirs. The transverse wave velocity is favorable for reservoir characterization. Currently, the main method used to estimate the transverse wave velocity is petrophysical modeling, which establishes a relationship between the elastic and physical parameters of the reservoir. In this paper, the siliceous minerals in the dolomite in the study area are regarded as solid inclusions, and the calculation method of the rock matrix modulus is improved by using solid replacement. Then, an improved petrophysical model is constructed by combining the KT (Kuster–Toksöz) model, the DEM (Discrete Element Method) model, the Gassmann equation, and the Wood equation. The transverse wave velocity is estimated using the improved model under the constraint of the longitudinal wave velocity. The shapes of the transverse wave velocity curves obtained by the improved model and the deviations from the measured velocities are significantly better than those of the Xu–Payne model and other models. The results show that the improved model can effectively estimate the transverse wave velocity of the reservoir in this area, which provides a basis for future reservoir predictions in this area. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
1
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
174714803
Full Text :
https://doi.org/10.3390/en17010135