Back to Search Start Over

Constraints on the Fault Dip Angles of Lunar Graben and Their Significance for Lunar Thermal Evolution.

Authors :
Zhu, Kai
Liu, Jianzhong
Michael, Gregory
Lei, Danhong
Zeng, Xuejin
Source :
Remote Sensing. Jan2024, Vol. 16 Issue 1, p107. 18p.
Publication Year :
2024

Abstract

Lunar grabens are the largest tensional linear structures on the Moon. In this paper, 17 grabens were selected to investigate the dips and displacement–length ratios (γ) of graben-bounding faults. Several topographic profiles were generated from selected grabens to measure their rim elevation, width and depth through SLDEM2015 (+LOLA) data. The differences in rim elevation (∆h) and width (∆W) between two topographic profiles on each graben were calculated, yielding 146 sets of data. We plotted ∆h vs. ∆W for each and calculated the dip angle (α) of graben-bounding faults. A dip of 39.9° was obtained using the standard linear regression method. In order to improve accuracy, large error data were removed based on error analysis. The results, 49.4° and 52.5°, were derived by the standard linear regression and average methods, respectively. Based on the depth and length of grabens, the γ value of the graben-bounding normal fault is also studied in this paper. The γ value is 3.6 × 10−3 for lunar normal faults according to the study of grabens and the Rupes Recta normal fault. After obtaining the values of α and γ, the increase in lunar radius indicated by the formation of grabens was estimated. We suggest that the lunar radius has increased by approximately 130 m after the formation of grabens. This study could aid in the understanding of normal fault growth and provide important constraints on the thermal evolution of the Moon. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*ANGLES
*MOON
*RECTUM
*LUNAR craters

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
1
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
174714387
Full Text :
https://doi.org/10.3390/rs16010107