Back to Search Start Over

Tangeretin attenuates acute lung injury in septic mice by inhibiting ROS-mediated NLRP3 inflammasome activation via regulating PLK1/AMPK/DRP1 signaling axis.

Authors :
Liu, Yuntao
Zhang, Yuting
You, Guoxing
Zheng, Danwen
He, Zhipeng
Guo, Wenjie
Antonina, Kim
Shukhrat, Ziyadullaev
Ding, Banghan
Zan, Jie
Zhang, Zhongde
Source :
Inflammation Research. Jan2024, Vol. 73 Issue 1, p47-63. 17p.
Publication Year :
2024

Abstract

Objective: NLRP3 inflammasome-mediated pyroptosis of macrophage acts essential roles in the progression of sepsis-induced acute lung injury (ALI). Tangeretin (TAN), enriched in citrus fruit peel, presents anti-oxidative and anti-inflammatory effects. Here, we aimed to explore the potentially protective effect of TAN on sepsis-induced ALI, and the underlying mechanism of TAN in regulating NLRP3 inflammasome. Material and methods: The effect of TAN on sepsis-induced ALI and NLRP3 inflammasome-mediated pyroptosis of macrophage were examined in vivo and in vitro using a LPS-treated mice model and LPS-induced murine macrophages, respectively. The mechanism of TAN regulating the activation of NLRP3 inflammasome in sepsis-induced ALI was investigated with HE staining, Masson staining, immunofluorescent staining, ELISA, molecular docking, transmission electron microscope detection, qRT-PCR, and western blot. Results: TAN could evidently attenuate sepsis-induced ALI in mice, evidenced by reducing pulmonary edema, pulmonary congestion and lung interstitial fibrosis, and inhibiting macrophage infiltration in the lung tissue. Besides, TAN significantly suppressed inflammatory cytokine IL-1β and IL-18 expression in the serum or bronchoalveolar lavage fluid (BALF) samples of mice with LPS-induced ALI, and inhibited NLRP3 inflammasome-mediated pyroptosis of macrophages. Furthermore, we found TAN inhibited ROS production, preserved mitochondrial morphology, and alleviated excessive mitochondrial fission in LPS-induced ALI in mice. Through bioinformatic analysis and molecular docking, Polo-like kinase 1 (PLK1) was identified as a potential target of TAN for treating sepsis-induced ALI. Moreover, TAN significantly inhibited the reduction of PLK1 expression, AMP-activated protein kinase (AMPK) phosphorylation, and Dynamin related protein 1 (Drp1) phosphorylation (S637) in LPS-induced ALI in mice. In addition, Volasertib, a specific inhibitor of PLK1, abolished the protective effects of TAN against NLRP3 inflammasome-mediated pyroptosis of macrophage and lung injury in the cell and mice septic models. Conclusion: TAN attenuates sepsis-induced ALI by inhibiting ROS-mediated NLRP3 inflammasome activation via regulating PLK1/AMPK/DRP1 signaling axis, and TAN is a potentially therapeutic candidate against ALI through inhibiting pyroptosis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10233830
Volume :
73
Issue :
1
Database :
Academic Search Index
Journal :
Inflammation Research
Publication Type :
Academic Journal
Accession number :
174687954
Full Text :
https://doi.org/10.1007/s00011-023-01819-8