Back to Search
Start Over
Rapid self-assembly of self-healable and transferable liquid metal epidermis.
- Source :
-
Journal of Colloid & Interface Science . Mar2024, Vol. 658, p148-155. 8p. - Publication Year :
- 2024
-
Abstract
- [Display omitted] Healable electronic skins, an essential component for future soft robotics, implantable bioelectronics, and smart wearable systems, necessitate self-healable and pliable materials that exhibit functionality at intricate interfaces. Although a plethora of self-healable materials have been developed, the fabrication of highly conformal biocompatible functional materials on complex biological surfaces remains a formidable challenge. Inspired by regenerative properties of skin, we present the self-assembled transfer-printable liquid metal epidermis (SALME), which possesses autonomous self-healing capabilities at the oil–water interface. SALME comprises a layer of surfactant-grafted liquid metal nanodroplets that spontaneously assemble at the oil–water interface within a few seconds. This unique self-assembly property facilitates rapid restoration (<10 s) of SALME following mechanical damage. In addition to its self-healing ability, SALME exhibits excellent shear resistance and can be seamlessly transferred to arbitrary hydrophilic/hydrophobic curved surfaces. The transferred SALME effectively preserves submicron-scale surface textures on biological substrates, thus displaying tremendous potential for future epidermal bioelectronics. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219797
- Volume :
- 658
- Database :
- Academic Search Index
- Journal :
- Journal of Colloid & Interface Science
- Publication Type :
- Academic Journal
- Accession number :
- 174666178
- Full Text :
- https://doi.org/10.1016/j.jcis.2023.12.070