Back to Search Start Over

Photosynthesis, ionomics and metabolomics of the host-hemiparasite association Acacia gerrardii-Viscum schimperi.

Authors :
Barhoumi, Zouhaier
Source :
Functional Plant Biology. 2024, Vol. 51 Issue 1, p1-13. 13p.
Publication Year :
2024

Abstract

Viscum schimperi is an evergreen hemiparasitic plant that can grow on stems and branches of several tree species. It penetrates the host tissues and forms a vascular bridge (haustorium) to withdraw the nutritive resources. Its relationships with hosts remain unknown. This study aimed to investigate the physiological and biochemical attributes of the host-hemiparasite association Acacia gerrardii-Viscum schimperi. The hemiparasite exhibited 2.4- and 3.0-fold lower photosynthetic activity and water use efficiency, and 1.2- and 4.1-fold higher transpiration rate and stomatal conductance. Equally, it displayed 4.9- and 2.6-fold greater water potential and osmotic potential, and in least 3.0 times more accumulated 39K, 85Rb and 51V, compared to the host. Nevertheless, it had no detrimental effect on photosynthetic activity, water status and multi-element accumulations in the host. Based on metabolome profiling, V. schimperi could use xanthurenic acid and propylparaben to acquire potassium from the host, and N-1-naphthylacetamide and N-Boc-hydroxylamine to weaken or kill the distal part of the infected branch and to receive the total xylem contents. In contrast, A. gerrardii could used N-acetylserotonin, arecoline, acetophenone and 6-methoxymellein to defend against V. schimperi infection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14454408
Volume :
51
Issue :
1
Database :
Academic Search Index
Journal :
Functional Plant Biology
Publication Type :
Academic Journal
Accession number :
174651699
Full Text :
https://doi.org/10.1071/FP23206