Back to Search Start Over

Binder-free barium-implanted MnO2 nanosheets on carbon cloth for flexible zinc-ion batteries.

Authors :
Li, Yueying
Li, Na
Li, Zhen
Wang, Jian-Gan
Source :
Journal of Chemical Physics. 1/7/2024, Vol. 160 Issue 1, p1-10. 10p.
Publication Year :
2024

Abstract

The intrinsically low electrical conductivity and poor structural fragility of MnO2 have significantly hampered the zinc storage performance. In this work, Ba2+-implanted δ-MnO2 nanosheets have been hydrothermally grown on a carbon cloth (Ba–MnO2@CC) as an extremely stable and efficient cathode material of aqueous zinc-ion batteries. The three-dimensionally porous architecture composed of interwoven thin MnO2 nanosheets effectively shortens the electron/ion transport distances, enlarges the electrode/electrolyte contact area, and increases the active sites for the electrochemical reaction. Meanwhile, Ba2+ could function as an interlayer pillar to stabilize the crystal structure of MnO2. Consequently, the as-optimized Ba–MnO2@CC exhibits remarkable Zn2+ storage capabilities, such as a high capacity (305 mAh g−1 at 0.2 A g−1), prolonged lifespan (95% retention after a 200-cycling test), and superb rate capability. The binder-free cathode is also applicable for flexible energy storage devices with attractive properties. The present investigation provides important insights into designing advanced cathode materials toward wearable electronics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
160
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
174636829
Full Text :
https://doi.org/10.1063/5.0184529