Back to Search Start Over

Measures of weak non-compactness in L_{1}(\mu)-spaces.

Authors :
Chen, Dongyang
Source :
Proceedings of the American Mathematical Society. Feb2024, Vol. 152 Issue 2, p617-629. 13p.
Publication Year :
2024

Abstract

Disjoint sequence methods from the theory of Riesz spaces are used to study measures of weak non-compactness in L_{1}(\mu)-spaces. A principal new result of the present paper is the following: Let E be an abstract M-space. Then \begin{align*} \omega (B)&=\sup \{\limsup \limits _{n\rightarrow \infty }\rho _{B}(x_{n}):(x_{n})_{n}\subseteq B_{E} \operatorname {disjoint} \}\\ &=\inf \{\varepsilon >0:\exists x^{*}\in E^{*}_{+} \operatorname {so}\operatorname {that} B\subseteq [-x^{*},x^{*}]+\varepsilon B_{E^{*}}\}\\ &=\sup \{\limsup \limits _{n\rightarrow \infty }\rho _{B}(x_{n}):(x_{n})_{n}\subseteq B_{E} \operatorname {weakly}\operatorname {null} \}\\ &=\sup \{\operatorname {ca}_{\rho _{B}}((x_{n})_{n}):(x_{n})_{n}\subseteq (B_{E})_{+} \operatorname {increasing} \}\\ &=\sup \{\limsup \limits _{n\rightarrow \infty }\|x^{*}_{n}\|:(x^{*}_{n})_{n}\subseteq \operatorname {Sol}(B)\operatorname {disjoint}\}\\ &=\sup \{\limsup \limits _{n\rightarrow \infty }\sup \limits _{x^{*}\in B}|\langle x^{*},x_{n}\rangle |:(x_{n})_{n}\subseteq B_{E}\operatorname {disjoint} \}\\ \end{align*} for every norm bounded subset B of E^{*}. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*RIESZ spaces
*BANACH lattices

Details

Language :
English
ISSN :
00029939
Volume :
152
Issue :
2
Database :
Academic Search Index
Journal :
Proceedings of the American Mathematical Society
Publication Type :
Academic Journal
Accession number :
174558673
Full Text :
https://doi.org/10.1090/proc/16414