Back to Search
Start Over
Measures of weak non-compactness in L_{1}(\mu)-spaces.
- Source :
-
Proceedings of the American Mathematical Society . Feb2024, Vol. 152 Issue 2, p617-629. 13p. - Publication Year :
- 2024
-
Abstract
- Disjoint sequence methods from the theory of Riesz spaces are used to study measures of weak non-compactness in L_{1}(\mu)-spaces. A principal new result of the present paper is the following: Let E be an abstract M-space. Then \begin{align*} \omega (B)&=\sup \{\limsup \limits _{n\rightarrow \infty }\rho _{B}(x_{n}):(x_{n})_{n}\subseteq B_{E} \operatorname {disjoint} \}\\ &=\inf \{\varepsilon >0:\exists x^{*}\in E^{*}_{+} \operatorname {so}\operatorname {that} B\subseteq [-x^{*},x^{*}]+\varepsilon B_{E^{*}}\}\\ &=\sup \{\limsup \limits _{n\rightarrow \infty }\rho _{B}(x_{n}):(x_{n})_{n}\subseteq B_{E} \operatorname {weakly}\operatorname {null} \}\\ &=\sup \{\operatorname {ca}_{\rho _{B}}((x_{n})_{n}):(x_{n})_{n}\subseteq (B_{E})_{+} \operatorname {increasing} \}\\ &=\sup \{\limsup \limits _{n\rightarrow \infty }\|x^{*}_{n}\|:(x^{*}_{n})_{n}\subseteq \operatorname {Sol}(B)\operatorname {disjoint}\}\\ &=\sup \{\limsup \limits _{n\rightarrow \infty }\sup \limits _{x^{*}\in B}|\langle x^{*},x_{n}\rangle |:(x_{n})_{n}\subseteq B_{E}\operatorname {disjoint} \}\\ \end{align*} for every norm bounded subset B of E^{*}. [ABSTRACT FROM AUTHOR]
- Subjects :
- *RIESZ spaces
*BANACH lattices
Subjects
Details
- Language :
- English
- ISSN :
- 00029939
- Volume :
- 152
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Proceedings of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 174558673
- Full Text :
- https://doi.org/10.1090/proc/16414