Back to Search
Start Over
Passenger flow prediction and management method of urban public transport based on SDAE model and improved Bi-LSTM neural network.
- Source :
-
Journal of Intelligent & Fuzzy Systems . 2023, Vol. 45 Issue 6, p10563-10577. 15p. - Publication Year :
- 2023
-
Abstract
- In the era of big data, the exponentially increasing data volume and emerging technical tools have put forward new requirements for enterprise information management. Therefore, it is of great significance to enhance the core competitiveness of enterprises to explore how big data can empower the innovation of enterprise information management. Intelligent transportation system combines a variety of technologies and applies them to a large-scale transportation management system, so as to make a reasonable dispatch of traffic conditions. Aiming at the problem of the relatively low accuracy of bus passenger flow forecasting with the existing models, a short-term passenger flow prediction model combining Stacked Denoising Auto Encoder (SDAE) and improved bidirectional Long-short Term Memory network (Bi-LSTM) is proposed. First, the SDAE model is used to fill in the missing bus passenger flow data, the characteristics of the bus passenger flow data are effectively utilized, and the data with rich information is used to predict the missing values with high accuracy. Second, Bi-LSTM model combined with attention mechanism is used for short-term bus passenger flow prediction. Considering that the data sequence of bus passenger flow is relatively long and there is a two-way information flow, the BiLSTM neural network is used for prediction tasks, and the influence of key factors is highlighted through attention weights to mine the internal laws of passenger flow data. The experimental results show that the proposed method achieves the lowest prediction error among all the comparison methods in the task of short-term bus passenger flow prediction on the public transportation dataset, with MAE, MRE, and RMSE values of 6.014, 0.052, and 9.874, respectively. These findings confirmed the effectiveness of the new model in the passenger flow prediction field. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10641246
- Volume :
- 45
- Issue :
- 6
- Database :
- Academic Search Index
- Journal :
- Journal of Intelligent & Fuzzy Systems
- Publication Type :
- Academic Journal
- Accession number :
- 174544578
- Full Text :
- https://doi.org/10.3233/JIFS-232979