Back to Search Start Over

Accelerated aging for after-treatment devices of diesel engine: Method, emission characteristics, and equivalence.

Authors :
Lyu, Liqun
Wang, Junfang
Yin, Hang
Ji, Zhongrui
Tan, Jianwei
Hao, Lijun
Ge, Yunshan
Source :
Applied Energy. Feb2024, Vol. 355, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

After-treatment devices of diesel engines effectively reduce exhaust emissions but deteriorate over time. Consequently, the China-VI emission regulation mandates a useful life of seven years or 700,000 km for after-treatment devices. Conventional engine bench aging methods, being costly and time-consuming, are inapplicable for long-term emission durability verification. This paper introduces an accelerated aging method based on the thermal accumulation and Arrhenius equation. Accelerated aging of four after-treatment devices of the same model at different temperatures and durations was carried out. Results revealed that barring the CDPF's PN filtration efficiency, the efficiencies of the DOC, SCR, and ASC catalysts declined with accelerated aging, especially under lower temperatures. Deterioration in conversion efficiencies of catalysts increased the NOx, CO, THC, and NH 3 emissions under cold- and warm-WHTC tests. Considering that the equivalent durability mileage of the after-treatment devices under 150 h 650 °C accelerated aging condition is approximately 870,000 km, while the CO, THC, PN, NOx, and NH 3 emission factors are 0.05 g/kWh, 0.21 g/kWh, 2.14 × 1010 #/kWh, 0.44 g/kWh, and 3.48 ppm, respectively, so the durability of the tested after-treatment devices could comply with the China-VI emission regulation. Although accelerated aging did not significantly affect PN emissions, it increased the balanced point temperature of CDPF and the proportion of sub-23 nm particles. If emission regulations further reduce the lower limit of PN measurement to 10 nm, it could negatively impact the emission durability of CDPF. In addition, comparing the 1000 h of conventional aging showed similar characteristics and results in NOx conversion efficiency and NOx emission, suggesting that the accelerated aging method is reliable. In conclusion, the accelerated aging method reduces the durability verification duration, providing a cost-effective regulatory tool for environmental protection authorities and guidance for manufacturers to optimize device performance and durability. • Accelerated aging method for after-treatment devices of diesel engines is developed • Catalyst performance deteriorates more seriously under low temperatures • NOx deterioration is most pronounced during accelerated aging • Accelerated aging is well-equated with conventional bench aging based on SCR [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03062619
Volume :
355
Database :
Academic Search Index
Journal :
Applied Energy
Publication Type :
Academic Journal
Accession number :
174529085
Full Text :
https://doi.org/10.1016/j.apenergy.2023.122234