Back to Search Start Over

Generation of Atp6v1g3-Cre mice for investigation of intercalated cells and the collecting duct.

Authors :
Saxena, Vijay
Arregui, Samuel
Shaobo Zhang
Canas, Jorge
Xuebin Qin
Hains, David S.
Schwaderer, Andrew L.
Source :
American Journal of Physiology: Renal Physiology. Dec2023, Vol. 325 Issue 6, pF770-F778. 9p.
Publication Year :
2023

Abstract

Kidney intercalated cells (ICs) maintain acid-base homeostasis and recent studies have demonstrated that they function in the kidney’s innate defense. To study kidney innate immune function, ICs have been enriched using vacuolar ATPase (V-ATPase) B1 subunit (Atp6v1b1)-Cre (B1-Cre) mice. Although Atp6v1b1 is considered kidney specific, it is expressed in multiple organ systems, both in mice and humans, raising the possibility of off-target effects when using the Cre-lox system. We have recently shown using single-cell RNA sequencing that the gene that codes for the V-ATPase G3 subunit (mouse gene: Atp6v1g3; human gene: ATP6V1G3; protein abbreviation: G3) mRNA is selectively enriched in human kidney ICs. In this study, we generated Atp6v1g3-Cre (G3-Cre) reporter mice using CRISPR/CAS technology and crossed them with Tdtomatoflox/flox mice. The resultant G3-Cre+Tdt+ progeny was evaluated for kidney specificity in multiple tissues and found to be highly specific to kidney cells with minimal or no expression in other organs evaluated compared with B1-Cre mice. Tdt+ cells were flow sorted and were enriched for IC marker genes on RT-PCR analysis. Next, we crossed these mice to ihCD59 mice to generate an IC depletion mouse model (G3-Cre+ihCD59+/+). ICs were depleted in these mice using intermedilysin, which resulted in lower blood pH, suggestive of a distal renal tubular acidosis phenotype. The G3-Cre mice were healthy, bred normally, and produce regular-sized litter. Thus, this new “IC reporter” mice can be a useful tool to study ICs. NEW & NOTEWORTHY This study details the development, validation, and experimental use of a new mouse model to study the collecting duct and intercalated cells. Kidney intercalated cells are a cell type increasingly recognized to be important in several human diseases including kidney infections, acid-base disorders, and acute kidney injury. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1931857X
Volume :
325
Issue :
6
Database :
Academic Search Index
Journal :
American Journal of Physiology: Renal Physiology
Publication Type :
Academic Journal
Accession number :
174477521
Full Text :
https://doi.org/10.1152/ajprenal.00137.2023