Back to Search Start Over

Complete characterization of dynamical behavior of stochastic epidemic model motivated by black-Karasinski process: COVID-19 infection as a case.

Authors :
Han, Bingtao
Jiang, Daqing
Source :
Journal of the Franklin Institute. Dec2023, Vol. 360 Issue 18, p14841-14877. 37p.
Publication Year :
2023

Abstract

To capture the underlying dynamics of the COVID-19 pandemic, we develop a stochastic SEIABR compartmental model, where the concentration of coronaviruses in the environment is considered. This paper is the first attempt to introduce the Black-Karasinski process as the random fluctuations in the modeling of epidemic transmission, and it is shown that Black-Karasinski process is a both mathematically and biologically reasonable assumption compared with existing stochastic modeling methods. We first obtain two critical values R 0 S and R 0 E related to the basic reproduction number R 0 of deterministic system. It is theoretically proved that (i) if R 0 S > 1 , the stochastic model has a stationary distribution ℓ (·) , which implies the long-term persistence of COVID-19; (ii) the disease will go extinct exponentially when R 0 E < 1 ; (iii) R 0 S = R 0 E = R 0 if there is no environmental noise in COVID-19 transmission. Then, we study the local stability of the endemic equilibrium P * of deterministic system under R 0 > 1. By developing an important lemma for solving the relevant Fokker-Planck equation, an approximate expression of probability density function of the distribution ℓ (·) around P * is further derived. Finally, several numerical examples are performed to substantiate our theoretical results. It should be mentioned that the techniques and methods of analysis in this paper can be applied to other complex high-dimensional stochastic epidemic systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00160032
Volume :
360
Issue :
18
Database :
Academic Search Index
Journal :
Journal of the Franklin Institute
Publication Type :
Periodical
Accession number :
174419434
Full Text :
https://doi.org/10.1016/j.jfranklin.2023.10.007