Back to Search Start Over

Multi-objective optimization of breakthrough times for hydrogen purification through layered bed pressure swing adsorption based on genetic algorithm and artificial neural network model.

Authors :
Li, Chenglong
Yang, Tianqi
Luo, Hao
Tong, Liang
Bénard, Pierre
Chahine, Richard
Xiao, Jinsheng
Source :
International Journal of Hydrogen Energy. Jan2024:Part B, Vol. 52, p390-405. 16p.
Publication Year :
2024

Abstract

Hydrogen purification from steam methane reforming (SMR) by pressure swing adsorption (PSA) technology is a common method to obtain high-purity hydrogen. The breakthrough time can well reflect the adsorption dynamics and help PSA cycle design. In order to avoid time-consuming and labor-intensive breakthrough curve experiments, it is very necessary to develop a fast and accurate surrogate model. In this study, a genetic algorithm (GA) and artificial neural network (ANN) are combined to predict and optimize breakthrough times of adsorbates in activated carbon/zeolite layered beds. Using the Latin hypercube sampling strategy, training data sets of GA-optimized ANN (GA-ANN) obtains from the physical model of adsorption, heat and mass transfer model. The genetic algorithm (GA) optimizes the weights and biases of ANN for better performance. The ANN topology has 4 input variables (superficial velocity, activated carbon height, adsorption pressure and feed temperature) and 3 output variables (breakthrough times of CH 4 , CO and CO 2). The number of neurons in the hidden layer for the GA-ANN model was optimized as 7 to predict and optimize the maximum breakthrough time of SMR with a four-component (H 2 /CH 4 /CO/CO 2) system. The sensitivity analysis displays that relative importance to the breakthrough time is in the order of superficial velocity (40.88%) > adsorption pressure (24.55%) > activated carbon height (21.04%) > feed temperature (13.53%). To obtain high-purity hydrogen, the GA-ANN model combined with multi-objective GA optimization is used to maximize the breakthrough times of CH 4 and CO. The GA-ANN surrogate model proposed in this paper can not only accurately and quickly achieve the purpose of predicting the system breakthrough time with a high correlation coefficient (R = 0.9937) but also obtains the optimal operating conditions of PSA hydrogen purification. • A rigorous heat and mass transfer model of multi-component adsorption is established. • Artificial neural network (ANN) is well-trained by Latin hypercube sampling method. • Genetic algorithm (GA) optimizes the weights and biases of ANN for better performance. • Superficial velocity has the highest relative importance value on breakthrough time. • GA-optimized ANN model and GA combined for maximal breakthrough time of impurities. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03603199
Volume :
52
Database :
Academic Search Index
Journal :
International Journal of Hydrogen Energy
Publication Type :
Academic Journal
Accession number :
174321655
Full Text :
https://doi.org/10.1016/j.ijhydene.2023.08.357