Back to Search Start Over

Plasma Superoxide Dismutase-1 as a Surrogate Marker of Vivax Malaria Severity.

Authors :
Andrade, Bruno B.
Reis-Filho, Antonio
Souza-Neto, SebastiĆ£o Martins
Raffaele-Netto, Imbroinise
Camargo, Luis M. A.
Barral, Aldina
Barral-Netto, Manoel
Source :
PLoS Neglected Tropical Diseases. 4/6/2010, Vol. 4 Issue 4, p1-8. 8p.
Publication Year :
2010

Abstract

Background: Severe outcomes have been described for both Plasmodium falciparum and P. vivax infections. The identification of sensitive and reliable markers of disease severity is fundamental to improving patient care. An intense pro-inflammatory response with oxidative stress and production of reactive oxygen species is present in malaria. Inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and antioxidant agents such as superoxide dismutase-1 (SOD-1) are likely candidate biomarkers for disease severity. Here we tested whether plasma levels of SOD-1 could serve as a biomarker of severe vivax malaria. Methodology/Principal Findings: Plasma samples were obtained from residents of the Brazilian Amazon with a high risk for P. vivax transmission. Malaria diagnosis was made by both microscopy and nested PCR. A total of 219 individuals were enrolled: non-infected volunteers (n = 90) and individuals with vivax malaria: asymptomatic (n = 60), mild (n = 50) and severe infection (n = 19). SOD-1 was directly associated with parasitaemia, plasma creatinine and alanine amino-transaminase levels, while TNF-alpha correlated only with the later enzyme. The predictive power of SOD-1 and TNF-alpha levels was compared. SOD-1 protein levels were more effective at predicting vivax malaria severity than TNF-alpha. For discrimination of mild infection, elevated SOD-1 levels showed greater sensitivity than TNF-alpha (76% vs. 30% respectively; p<0.0001), with higher specificity (100% vs. 97%; p<0.0001). In predicting severe vivax malaria, SOD-1 levels exhibited higher sensitivity than TNF-alpha (80% vs. 56%, respectively; p<0.0001; likelihood ratio: 7.45 vs. 3.14; p<0.0001). Neither SOD-1 nor TNF-alpha could discriminate P. vivax infections from those caused by P. falciparum. Conclusion: SOD-1 is a powerful predictor of disease severity in individuals with different clinical presentations of vivax malaria. Author Summary: Despite being considered a relatively benign disease, Plasmodium vivax infection has been associated with fatal outcomes due to treatment failure or inadequate health care. The identification of sensitive and reliable markers of disease severity is important to improve the quality of patient care. Although not imperative, a good marker should have a close causative relationship with the disease pathogenesis. During acute malaria, an intense inflammatory response and a well-documented oxidative burst are noted. Among the free radicals released, superoxide anions account for the great majority. The present study aimed to evaluate the reliability of using an antioxidant enzyme, responsible for the clearance of superoxide anions, as a marker of vivax malaria severity. Thus, we investigated individuals from an Amazonian region highly endemic for vivax malaria with the goal of predicting infection severity by measuring superoxide dismutase-1 (SOD-1) plasma levels. In addition, we compared the predictive power SOD-1 to that of the tumor necrosis factor (TNF)-alpha. SOD-1 was a more powerful predictor of disease severity than TNF-alpha in individuals with different clinical presentations of vivax malaria. This finding opens up new approaches in the initial screening of severe vivax malaria cases. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19352727
Volume :
4
Issue :
4
Database :
Academic Search Index
Journal :
PLoS Neglected Tropical Diseases
Publication Type :
Academic Journal
Accession number :
174304826
Full Text :
https://doi.org/10.1371/journal.pntd.0000650