Back to Search Start Over

Malvidin and Its Mono- and Di-Glucosides Forms: A Study of Combining Both In Vitro and Molecular Docking Studies Focused on Cholinesterase, Butyrylcholinesterase, COX-1 and COX-2 Activities.

Authors :
Strugała-Danak, Paulina
Spiegel, Maciej
Gabrielska, Janina
Source :
Molecules. Dec2023, Vol. 28 Issue 23, p7872. 14p.
Publication Year :
2023

Abstract

Malvidin, one of the six most prominent anthocyanins found in various fruits and vegetables, may possess a wide range of health-promoting properties. The biological activity of malvidin and its glycosides is not entirely clear and has been relatively less frequently studied compared to other anthocyanins. Therefore, this study aimed to determine the relationship between the structural derivatives of malvidin and their anti-cholinergic and anti-inflammatory activity. The study selected malvidin (Mv) and its two sugar derivatives: malvidin 3-O-glucoside (Mv 3-glc) and malvidin 3,5-O-diglucoside (Mv 3,5-diglc). The anti-inflammatory activity was assessed by inhibiting the enzymes, specifically COX-1 and COX-2. Additionally, the inhibitory effects on cholinesterase activity, particularly acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), were evaluated. Molecular modeling was also employed to examine and visualize the interactions between enzymes and anthocyanins. The results revealed that the highest inhibitory capacity at concentration 100 µM was demonstrated by Mv 3-glc in relation to AChE (26.3 ± 3.1%) and BChE (22.1 ± 3.0%), highlighting the crucial role of the glycoside substituent at the C3 position of the C ring in determining the inhibitory efficiency of these enzymes. In addition, the glycosylation of malvidin significantly reduced the anti-inflammatory activity of these derivatives compared to the aglycone form. The IC50 parameter demonstrates the following relationship for the COX-1 enzyme: Mv (12.45 ± 0.70 µM) < Mv 3-glc (74.78 ± 0.06 µM) < Mv 3,5-diglc (90.36 ± 1.92 µM). Similarly, for the COX-2 enzyme, we have: Mv (2.76 ± 0.16 µM) < Mv 3-glc (39.92 ± 3.02 µM) < Mv 3.5-diglc (66.45 ± 1.93 µM). All tested forms of malvidin exhibited higher activity towards COX-2 compared to COX-1, indicating their selectivity as inhibitors of COX-2. Theoretical calculations were capable of qualitatively replicating most of the noted patterns in the experimental data, explaining the impact of deprotonation and glycosylation on inhibitory activity. It can be suggested that anthocyanins, such as malvidins, could be valuable in the development of treatments for inflammatory conditions and Alzheimer's disease and deserve further study. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
28
Issue :
23
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
174112841
Full Text :
https://doi.org/10.3390/molecules28237872