Back to Search Start Over

Breakdown of conventional winding number calculation in one-dimensional lattices with interactions beyond nearest neighbors.

Authors :
Rajabpoor Alisepahi, Amir
Sarkar, Siddhartha
Sun, Kai
Ma, Jihong
Source :
Communications Physics. 11/21/2023, Vol. 6 Issue 1, p1-12. 12p.
Publication Year :
2023

Abstract

Topological insulators hold promises to realize exotic quantum phenomena in electronic, photonic, and phononic systems. Conventionally, topological indices, such as winding numbers, have been used to predict the number of topologically protected domain-wall states (TPDWSs) in topological insulators, a signature of the topological phenomenon called bulk-edge correspondence. Here, we demonstrate theoretically and experimentally that the number of TPDWSs in a mechanical Su-Schrieffer-Heeger (SSH) model can be higher than the winding number depending on the strengths of beyond-nearest-neighbor interactions, revealing the breakdown of the winding number prediction. Alternatively, we resort to the Berry connection to accurately characterize the number and spatial features of TPDWSs in SSH systems, further confirmed by the Jackiw-Rebbi theory proving that the multiple TPDWSs correspond to the bulk Dirac cones. Our findings deepen the understanding of complex network dynamics and offer a generalized paradigm for precise TPDWS prediction in potential applications involving localized vibrations, such as drug delivery and quantum computing. Topological insulators are bulk insulators with conducting zero-energy edge states conventionally predicted by topological indices, such as winding numbers in one-dimensional lattices. Here, the authors use the Jackiw-Rebbi theory to reveal that the number of topologically protected zero-energy states can be higher than the winding number. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23993650
Volume :
6
Issue :
1
Database :
Academic Search Index
Journal :
Communications Physics
Publication Type :
Academic Journal
Accession number :
173804770
Full Text :
https://doi.org/10.1038/s42005-023-01461-0