Back to Search Start Over

Homolytic C−H Bond Activation by Phosphine−Quinone‐Based Radical Ion Pairs.

Authors :
Helling, Christoph
van der Zee, Lars J. C.
Hofman, Jelle
de Zwart, Felix J.
Mathew, Simon
Nieger, Martin
Slootweg, J. Chris
Source :
Angewandte Chemie. 11/27/2023, Vol. 135 Issue 48, p1-7. 7p.
Publication Year :
2023

Abstract

Herein, we present the formation of transient radical ion pairs (RIPs) by single‐electron transfer (SET) in phosphine−quinone systems and explore their potential for the activation of C−H bonds. PMes3 (Mes=2,4,6‐Me3C6H2) reacts with DDQ (2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone) with formation of the P−O bonded zwitterionic adduct Mes3P−DDQ (1), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6‐iPr3C6H2) afforded C−H bond activation product Tip2P(H)(2‐[CMe2(DDQ)]‐4,6‐iPr2‐C6H2) (2). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3]⋅+[DDQ]⋅−, and subsequent homolytic C−H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2P(H)(2‐[CMe2{TCQ−B(C6F5)3}]‐4,6‐iPr2‐C6H2) (4, TCQ=tetrachloro‐1,4‐benzoquinone) and Tip2P(H)(2‐[CMe2{oQtBu−B(C6F5)3}]‐4,6‐iPr2‐C6H2) (8, oQtBu=3,5‐di‐tert‐butyl‐1,2‐benzoquinone), from reactions of PTip3 with Lewis‐acid activated quinones, TCQ−B(C6F5)3 and oQtBu−B(C6F5)3, respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C−H bond activation by the synergistic action of radical ion pairs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
135
Issue :
48
Database :
Academic Search Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
173777865
Full Text :
https://doi.org/10.1002/ange.202313397