Back to Search Start Over

Large-band-gap non-Dirac quantum spin Hall states and strong Rashba effect in functionalized thallene films.

Authors :
Liu, Xiaojuan
Li, Zhijian
Bao, Hairui
Yang, Zhongqin
Source :
Scientific Reports. 11/20/2023, Vol. 13 Issue 1, p1-11. 11p.
Publication Year :
2023

Abstract

The quantum spin Hall state materials have recently attracted much attention owing to their potential applications in the design of spintronic devices. Based on density functional theory calculations and crystal field theory, we study electronic structures and topological properties of functionalized thallene films. Two different hydrogenation styles (Tl2H and Tl2H2) are considered, which can drastically vary the electronic and topological behaviors of the thallene. Due to the C3v symmetry of the two systems, the px and py orbitals at the Γ point have the non-Dirac band degeneracy. With spin–orbit coupling (SOC), topological nontrivial band gaps can be generated, giving rise to non-Dirac quantum spin Hall states in the two thallium hydride films. The nontrivial band gap for the monolayer Tl2H is very large (855 meV) due to the large on-site SOC of Tl px and py orbitals. The band gap in Tl2H2 is, however, small due to the band inversion between the Tl px/y and pz orbitals. It is worth noting that both the Tl2H and Tl2H2 monolayers exhibit strong Rashba spin splitting effects, especially for the monolayer Tl2H2 (αR = 2.52 eVÅ), rationalized well by the breaking of the structural inversion symmetry. The Rashba effect can be tuned sensitively by applying biaxial strain and external electric fields. Our findings provide an ideal platform for fabricating room-temperature spintronic and topological electronic devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
173764755
Full Text :
https://doi.org/10.1038/s41598-023-43314-4