Back to Search Start Over

The proportional Caputo operator approach to the thermal transport of Jeffery tri-hybrid nanofluid in a rotating frame with thermal radiation.

Authors :
Arif, Muhammad
Kumam, Poom
Watthayu, Wiboonsak
Di Persio, Luca
Source :
Scientific Reports. 11/18/2023, Vol. 13 Issue 1, p1-18. 18p.
Publication Year :
2023

Abstract

Engine Oil is a widely used fluid in engineering problems, particularly to enhance the rate of heat transfer when these working fluids play a fundamental role. We consider engine oil as a base fluid and the suspension of different shaped (Spherical cylindrical and platelet) nanoparticles dispersed uniformly in the base fluid to enhance the working capability of engine oil. The spherical shape CuO , platelet shape Al 2 O 3 and cylindrical shape TiO 2 nanoparticles are added in engine oil to constitute tri-hybrid nanofluid aiming at obtaining better thermal performance. Furthermore, we also analyze the Jeffery tri-hybrid nanofluid in a rotating frame over an infinite vertical plate. More precisely, the classical model of Jeffery tri-hybrid nanofluid is transformed into a time-fractional model by applying the newly developed constant proportional Caputo fractional derivatives. Sharp numerical results are obtained applying a Laplace transform steered approach. All the flow parameters are highlighted through graphs via MATHCAD. Furthermore, a comparative analysis between nanofluid, hybrid nanofluid and tri-hybrid nanofluid has been performed showing that tri-hybrid nanofluid has good thermal performance. The solutions of the constant proportional operator are discussed classically by taking fractional parameter α → 1. Moreover, some engineering quantities have been calculated and presented in tables. During the analysis we dispersing the mixture of nanoparticles in engine oil base fluid enhanced the heat transfer up-to18.72% which can efficiently improve the lubricity of the engine oil. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
173737425
Full Text :
https://doi.org/10.1038/s41598-023-29222-7