Back to Search Start Over

Preparation of carbon-rich material from Dendrobium officinale polysaccharide in deep eutectic system.

Authors :
Zhang, Yuan
Yu, Lu
Ge, Wuxia
Bi, Wentao
Chen, David Da Yong
Source :
International Journal of Biological Macromolecules. Dec2023:Part 8, Vol. 253, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

A carbon-rich material (DESysChar) was prepared from polysaccharide within a deep eutectic system (DESys) containing oxalic acid, and systematically characterized using various analytical techniques. The investigation of reaction mechanism revealed concurrent dehydration and etherification processes. This study commenced with the extraction of plant polysaccharide using the DESys-based mechanochemical extraction method from Dendrobium officinale. Subsequently, the DESys method was used to carbonize the extracted Dendrobium officinale polysaccharide and produce DESysChar. DESysChar was then used for the adsorption and determination of pollutants in water. This study represents a significant advancement in eco-friendly material synthesis, enabling the low-temperature (120 °C) carbonization of plant-derived polysaccharides, thereby reducing energy consumption and environmental impact. The effective adsorption of methylene blue by DESysChar underscores its potential in environmental remediation. This study presents a more responsible and efficient approach to polysaccharide extraction and carbonization, addressing environmental concerns. Embracing the 4S workflow (involving Sustainable raw materials converted into Sustainable degradable products, by using Sustainable technology throughout the process to create a Sustainable environment) promotes sustainability in material development, laying the foundation for future eco-friendly practices in various industries. In summary, this study propels sustainable polysaccharide development for widespread use. [Display omitted] • Carbon-rich material was prepared from polysaccharides in a deep eutectic system with milder conditions. • Dehydration and etherification both occurred during carbon-rich material formation. • Sustainable raw material to sustainable new material with sustainable method for sustainable environment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01418130
Volume :
253
Database :
Academic Search Index
Journal :
International Journal of Biological Macromolecules
Publication Type :
Academic Journal
Accession number :
173724135
Full Text :
https://doi.org/10.1016/j.ijbiomac.2023.127394