Back to Search Start Over

Synthetic mapping of XCO2 retrieval performance from shortwave infrared measurements: impact of spectral resolution, signal-to-noise ratio and spectral band selection.

Authors :
Dogniaux, Matthieu
Crevoisier, Cyril
Source :
Atmospheric Measurement Techniques Discussions. 11/14/2023, p1-35. 35p.
Publication Year :
2023

Abstract

Satellites have been providing spaceborne observations of the total column of CO2 (noted xco2) for over two decades now and, with the need for independent verification of Paris Agreement objectives, many new satellite concepts are currently planned or being studied to complement or extend the already existing instruments. Depending on whether they are targeting natural and/or anthropogenic fluxes of CO2, the design of these future concepts vary greatly. The characteristics of their shortwave infrared (SWIR) observations notably explore several orders of magnitude in spectral resolution (from λ/Δλ~400 for Carbon Mapper to λ/Δλ~25000 for MicroCarb) and include different selections of spectral bands (from one to four bands, among which the CO2-sensitive 1.6 µm and/or 2.05 µm bands). Besides, the very nature of the spaceborne measurements is also explored: for instance, the NanoCarb imaging concept proposes to measure CO2-sensitive truncated interferograms, instead of infrared spectra as other concepts, in order to significantly reduce the instrument size. This study synthetically explores the impact of three different design parameters on xco2 retrieval performance, as obtained through Optimal Estimation: (1) the spectral resolution; (2) the signal-to-noise ratio (SNR) and (3) the spectral band selection. Similar performance assessments are completed for the exactly-defined MicroCarb, Copernicus CO2 Monitoring (CO2M) and NanoCarb concepts. We show that improving SNR is more efficient than improving spectral resolution to increase xco2 precision when perturbating these parameters across two orders of magnitude, and that low-SNR and/or low spectral resolution yield xco2 with vertical sensitivities giving more weight to atmospheric layers close to the surface. The exploration of various spectral band combinations illustrates, especially for lower spectral resolutions, how including an O2- sensitive band helps to increase optical path length information, and how the 2.05 µm CO2-sensitive band contains more geophysical information than the 1.6 µm band. With very different characteristics, MicroCarb shows a CO2 information content only slightly higher than CO2M, which translates into lower xco2 random errors, by a factor ranging from 1.1 to 1.9 depending on the observational situation. The NanoCarb performance for a single pixel of its imager compares to concepts that measure spectra at low-SNR and low-spectral resolution but, as this novel concept would observe a given target several times during a single overpass, its performance improves when combining all the observations. Overall, the broad range of results obtained through this synthetic xco2 performance mapping hints at the future intercomparison challenges that the wide variety of upcoming CO2-observing concepts will pose. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18678610
Database :
Academic Search Index
Journal :
Atmospheric Measurement Techniques Discussions
Publication Type :
Academic Journal
Accession number :
173712511