Back to Search
Start Over
Carbonization of Ni@SiC@C nanoparticles reinforced PAN nanofibers for adjustable impedance matching.
- Source :
-
Chemical Engineering Journal . Nov2023, Vol. 476, pN.PAG-N.PAG. 1p. - Publication Year :
- 2023
-
Abstract
- [Display omitted] • Ni@SiC@C double-shell nanoparticles were dispersed into CNFs by electrospinning. • Carbonization temperature is the critical for optimizing impedance matching. • The N-doped defect introduces extensive defects to generate dipole polarization. • The dispersed double-shell nanoparticles can provide abundant interface polarization. Achieving a broad bandwidth and efficient absorption of electromagnetic wave absorption materials remains a significant challenge, especially when considering electromagnetic pollution protection. One-dimensional carbon nanofibers with a three-dimensional network structure have been extensively studied to address this need. However, the high permittivity of carbon nanofibers results in a strong impedance mismatch with free space. In this work, we successfully dispersed double-shell Ni@SiC@C nanoparticles into one-dimensional carbon nanofibers (Ni@SiC@C CNFs) using electrospinning and heat treatment. We extensively explored the effect of carbonization temperature on the impedance matching and magnetic-dielectric loss for electromagnetic wave. The presence of rich interfaces from the double-shell nanoparticles and defects from N-doping optimizes the impedance matching of the composites. The exceptional electromagnetic wave absorption properties of the Ni@SiC@C CNFs are attributed to the synergistic effect between the three-dimensional conductive network, the interface electronic engineering induced by the sensibly loaded double-shell nanoparticles, and the multiple reflections, especially at a carbonization temperature of 600 ℃. The achieved minimum reflection loss value has been measured at an outstanding −53.27 dB, coupled with a remarkable absorption bandwidth that spans from 2.53 GHz to 18.00 GHz (15.47 GHz) across various thicknesses. These findings underscore the potential of the meticulously engineered Ni@SiC@C CNFs as highly promising candidates for efficient and broadband electromagnetic wave absorption applications. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 13858947
- Volume :
- 476
- Database :
- Academic Search Index
- Journal :
- Chemical Engineering Journal
- Publication Type :
- Academic Journal
- Accession number :
- 173629835
- Full Text :
- https://doi.org/10.1016/j.cej.2023.146582