Back to Search Start Over

Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells.

Authors :
Song, Yang
Kim, Hyunmin
Jang, Ji‐Hyun
Bai, Wenjun
Ye, Caichao
Gu, Jiamin
Bu, Yunfei
Source :
Advanced Energy Materials. 11/10/2023, Vol. 13 Issue 42, p1-10. 10p.
Publication Year :
2023

Abstract

Solid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficient PrBaMn1.8Pt0.15Ni0.05O5+δ layered perovskite oxides is presented. This design addresses the critical problem of nanoparticle agglomeration at high temperatures, a major hurdle for SOCs. The atomic‐scale mechanisms of oxygen vacancy formation and hydrogen evolution reaction kinetics in the material are unraveled through density functional theory calculations. A unique finding of this work is the formation of a core‐shell structure during water electrolysis, simultaneously enhancing the electrochemical performance and operational durability in both fuel cell and electrolysis cell modes. This study not only strengthens the potential of Pt‐Ni alloy nanoparticles as efficient electro‐catalysts for SOCs, but also opens up avenues for future exploration in energy‐related fields. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16146832
Volume :
13
Issue :
42
Database :
Academic Search Index
Journal :
Advanced Energy Materials
Publication Type :
Academic Journal
Accession number :
173551920
Full Text :
https://doi.org/10.1002/aenm.202302384