Back to Search Start Over

Synergistic Effect Enhancing Baeyer‐Villiger Oxidation Performance of Resin‐Derived‐Carbon Supported FeCe Bimetallic Catalyst.

Authors :
Liu, Mengyang
Gu, Bin
Li, Jingmei
Wei, Huangzhao
Xue, Weiyang
Jiang, Yukun
Sun, Chenglin
Source :
ChemCatChem. 11/8/2023, Vol. 15 Issue 21, p1-10. 10p.
Publication Year :
2023

Abstract

Upgrading cyclohexanone to ϵ‐caprolactone (ϵ‐CL) is of great importance to the synthesis of high value‐added downstream chemicals and the reduction of foam plastic. The catalytic synthesis of ϵ‐CL from cyclohexanone through O2/aldehyde method is an environmentally benign one‐pot tandem reaction without using peroxy acid, balancing the requirements of safety and efficiency. However, due to lack of elaborate design and collaboration of multiple active sites for catalysts, the catalytic efficiency of O2/aldehyde method still remains to be improved. Herein, a pitaya‐like catalyst (CeFe@RDC‐3) with Ce and Fe highly dispersed on resin‐derived‐carbon is synthesized through high temperature self‐assembly. On this bimetallic catalyst, high yield (97 %) of ϵ‐CL is achieved through aerobic oxidation of cyclohexanone with only 1.5 equivalent benzaldehyde. Moreover, considerable yields of ϵ‐CL, 88.3 % and 74.7 %, respectively, are also obtained over CeFe@RDC‐3 with green solvent (EtOAc) or even without solvent. No loss of activity is observed after five successive cycles, demonstrating high stability of CeFe@RDC‐3. The mechanism study reveals that the high performance of CeFe@RDC‐3 is ascribed to the Ce−Fe bimetallic synergy, uniform metal dispersion, abundant active oxygen and stabilizing effect of resin‐derived‐carbon to free radicals. This work provides prospect for a green, safe and low‐cost strategy for Baeyer‐Villiger process. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18673880
Volume :
15
Issue :
21
Database :
Academic Search Index
Journal :
ChemCatChem
Publication Type :
Academic Journal
Accession number :
173485791
Full Text :
https://doi.org/10.1002/cctc.202300852