Back to Search Start Over

EXPERIMENTAL INVESTIGATION OF MICRO-ECM ON MONEL 400 ALLOY USING PARTICLES MIXED ELECTROLYTE.

Authors :
GOKULANATHAN, LOGANATHAN
ANNAMALAI, JEGAN
Source :
Chemical Industry & Chemical Engineering Quarterly. Jan-Mar2024, Vol. 30 Issue 1, p81-88. 8p.
Publication Year :
2024

Abstract

The machining of extremely hard material in conventional machining requires high energy. Therefore stress-free, burr-free, and high-accuracy machining technique like Electro Chemical Micro Machining (ECMM) with extra features is recommended. To improve efficiency, various electrolytes such as Magnet Associated Electrolytes (MGAE), Metal Particle Mixed Electrolytes (MPME), and Carbon Pellets Mixed Electrolytes (CPME) are employed. The micro-holes were drilled over the work material MONEL 400 alloy. The parameters for the studies are electrolyte type, concentration (g/l), machining voltage (V), and duty cycle (%). The responses of ECMM are estimated through material removal rate (MRR) in μm/sec and overcut in μm. The results are optimized using Multi-objective optimization based on ratio analysis (MOORA) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). Both techniques produce the same optimal parameter, 18th experiment CPME, 50% duty cycle, 11 V machining voltage, and 28 g/l electrolyte concentration. It is the best optimal parameter solution for machining. According to the ANOVA table of both, the type of electrolyte plays a 62.6% and 60.37% contribution, respectively, to machining performance. Furthermore, the scanning electron microscope (SEM) image analysis perused on the micro holes to extend the effect of different electrolytes on machining surfaces. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14519372
Volume :
30
Issue :
1
Database :
Academic Search Index
Journal :
Chemical Industry & Chemical Engineering Quarterly
Publication Type :
Academic Journal
Accession number :
173332724
Full Text :
https://doi.org/10.2298/CICEQ221115013G