Back to Search Start Over

HPMCAS-Based Amorphous Solid Dispersions in Clinic: A Review on Manufacturing Techniques (Hot Melt Extrusion and Spray Drying), Marketed Products and Patents.

Authors :
Corrie, Leander
Ajjarapu, Srinivas
Banda, Srikanth
Parvathaneni, Madhukiran
Bolla, Pradeep Kumar
Kommineni, Nagavendra
Source :
Materials (1996-1944). Oct2023, Vol. 16 Issue 20, p6616. 19p.
Publication Year :
2023

Abstract

Today, therapeutic candidates with low solubility have become increasingly common in pharmaceutical research pipelines. Several techniques such as hot melt extrusion, spray drying, supercritical fluid technology, electrospinning, KinetiSol, etc., have been devised to improve either or both the solubility and dissolution to enhance the bioavailability of these active substances belonging to BCS Class II and IV. The principle involved in all these preparation techniques is similar, where the crystal lattice of the drug is disrupted by either the application of heat or dissolving it in a solvent and the movement of the fine drug particles is arrested with the help of a polymer by either cooling or drying to remove the solvent. The dispersed drug particles in the polymer matrix have higher entropy and enthalpy and, thereby, higher free energy in comparison to the crystalline drug. Povidone, polymethaacrylate derivatives, hydroxypropyl methyl cellulose (HPMC) and hydroxypropyl methylcellulose acetate succinate derivatives are commonly used as polymers in the preparation of ASDs. Specifically, hydroxypropylmethylcellulose acetate succinate (HPMCAS)-based ASDs have become well established in commercially available products and are widely explored to improve the solubility of poorly soluble drugs. This article provides an analysis of two widely used manufacturing techniques for HPMCAS ASDs, namely, hot melt extrusion and spray drying. Additionally, details of HPMCAS-based ASD marketed products and patents have been discussed to emphasize the commercial aspect. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
20
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
173314075
Full Text :
https://doi.org/10.3390/ma16206616