Back to Search Start Over

The Role of Doxycycline and IL-17 in Regenerative Potential of Periodontal Ligament Stem Cells: Implications in Periodontitis.

Authors :
Okić Đorđević, Ivana
Kukolj, Tamara
Živanović, Milena
Momčilović, Sanja
Obradović, Hristina
Petrović, Anđelija
Mojsilović, Slavko
Trivanović, Drenka
Jauković, Aleksandra
Source :
Biomolecules (2218-273X). Oct2023, Vol. 13 Issue 10, p1437. 19p.
Publication Year :
2023

Abstract

Periodontitis (PD) is a degenerative, bacteria-induced chronic disease of periodontium causing bone resorption and teeth loss. It includes a strong reaction of immune cells through the secretion of proinflammatory factors such as Interleukin-17 (IL-17). PD treatment may consider systemic oral antibiotics application, including doxycycline (Dox), exhibiting antibacterial and anti-inflammatory properties along with supportive activity in wound healing, thus affecting alveolar bone metabolism. In the present study, we aimed to determine whether Dox can affect the regenerative potential of periodontal ligament mesenchymal stem cells (PDLSCs) modulated by IL-17 in terms of cell migration, osteogenic potential, bioenergetics and expression of extracellular matrix metalloproteinase 2 (MMP-2). Our findings indicate that Dox reduces the stimulatory effect of IL-17 on migration and MMP-2 expression in PDLSCs. Furthermore, Dox stimulates osteogenic differentiation of PDLSCs, annulling the inhibitory effect of IL-17 on PDLSCs osteogenesis. In addition, analyses of mitochondrial respiration reveal that Dox decreases oxygen consumption rate in PDLSCs exposed to IL-17, suggesting that changes in metabolic performance can be involved in Dox-mediated effects on PDLSCs. The pro-regenerative properties of Dox in inflammatory microenvironment candidates Dox in terms of regenerative therapy of PD-affected periodontium are observed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2218273X
Volume :
13
Issue :
10
Database :
Academic Search Index
Journal :
Biomolecules (2218-273X)
Publication Type :
Academic Journal
Accession number :
173268495
Full Text :
https://doi.org/10.3390/biom13101437