Back to Search Start Over

Investigation of LSPR Coupling Effects toward the Rational Design of CsxWO3–δ Based Solar NIR Filtering Coatings.

Authors :
Daugas, Louise
Lahlil, Khalid
de Langavant, Capucine Cleret
Florea, Ileana
Larquet, Eric
Henry, Hervé
Kim, Jongwook
Gacoin, Thierry
Source :
Advanced Functional Materials. 10/18/2023, Vol. 33 Issue 43, p1-10. 10p.
Publication Year :
2023

Abstract

The optical range of localized surface plasmon resonance (LSPR) is extended into the infrared region, thanks to the development of highly doped semiconductor nanocrystals. Particularly, the near‐infrared (NIR) range holds a significant interest in managing solar radiation. However, practical applications necessitate the arrangement of particles, which is known to possibly impact their optical properties through LSPR coupling effects. How such coupling modifies the LSPR response in semiconductor hosts remains largely unexplored. In this study, a protocol for producing composite coatings composed of cesium‐doped tungsten bronze nanocrystals embedded in a silica matrix is presented. Achieving individual dispersion of nanocrystals is made possible through careful selection of a surface polyglycerol ligand exchange. This allows to tune the interparticle distance by adjusting the nanocrystal volume fraction in the composite. The findings demonstrate that LSPR coupling effects significantly influence the LSPR intensity of nanocrystals in the composite when the nanocrystal‐to‐nanocrystal distance matches their size. Beyond elucidating the LSPR coupling effect, this study provides insights into the potential use of Cs‐HTB nanocrystals for solar control applications. Through the optimization of morphology and film structure, remarkable selectivity is obtained in terms of maintaining good transparency in the visible range while achieving high absorption in the NIR. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
33
Issue :
43
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
173054898
Full Text :
https://doi.org/10.1002/adfm.202212845