Back to Search Start Over

Accurate generation of stochastic dynamics based on multi-model generative adversarial networks.

Authors :
Lanzoni, Daniele
Pierre-Louis, Olivier
Montalenti, Francesco
Source :
Journal of Chemical Physics. 10/14/2023, Vol. 159 Issue 14, p1-12. 12p.
Publication Year :
2023

Abstract

Generative Adversarial Networks (GANs) have shown immense potential in fields such as text and image generation. Only very recently attempts to exploit GANs to statistical-mechanics models have been reported. Here we quantitatively test this approach by applying it to a prototypical stochastic process on a lattice. By suitably adding noise to the original data we succeed in bringing both the Generator and the Discriminator loss functions close to their ideal value. Importantly, the discreteness of the model is retained despite the noise. As typical for adversarial approaches, oscillations around the convergence limit persist also at large epochs. This undermines model selection and the quality of the generated trajectories. We demonstrate that a simple multi-model procedure where stochastic trajectories are advanced at each step upon randomly selecting a Generator leads to a remarkable increase in accuracy. This is illustrated by quantitative analysis of both the predicted equilibrium probability distribution and of the escape-time distribution. Based on the reported findings, we believe that GANs are a promising tool to tackle complex statistical dynamics by machine learning techniques. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
159
Issue :
14
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
172990018
Full Text :
https://doi.org/10.1063/5.0170307