Back to Search Start Over

The effects of the differentiated macrophages by dexamethasone on the immune responses.

Authors :
Khosravi, Mohammad
MoriBazofti, Hadis
Mohammadian, Babak
Rashno, Mohammad
Source :
International Immunopharmacology. Nov2023:Part A, Vol. 124, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

• The current study was planned to evaluate the effect of dexamethasone treated monocytes, which carry antigens, on the immune system responses. • Treatment of macrophage with 10-5 M of dexamethasone for 48 h increased the IL-10 and TGF-β and reduced TNF-α and IL-1 gene expressions. • The highest antigens were determined in treated macrophages five days after treatment. • The effects of dexamethasone on metabolism and differentiation of monocytes was depended on the dose, time, and duration of the treatment. The characteristics of M2 macrophages suggest immunotherapeutic approaches for inducing immunological tolerance. The current study aimed to evaluate the effect of Dexamethasone (Dex) treatment on monocytes polarization and its impact on immune responses. The monocytes were extracted from the rat's blood samples. The effects of Dex concentration and treatment duration on monocyte viability, phagocytosis of rabbit red blood cell (RRBC) antigens, and cytokine gene expression were evaluated using MTT, ELISA, and Real-Time PCR analysis, respectively. The monocytes treated with Dex were injected into the rats as an autograft. The effects of the grafted cells were assessed on immune responses, monocyte differentiation, and pathological lesions, in comparison to the control groups. Treatment of monocytes with 10-5 M of Dex for 48 h increased the expression of IL-10 and TGF-β genes, while reducing the expression of TNF-α and IL-1 genes. The monocytes treated with antigen and Dex showed higher CD206 gene expression compared to CD80. The cells that were treated with Dex had the highest concentration of antigens after five days. Administration of the grafted cells to the animals has some significant effects on innate immune responses and no impact on pathological lesions. The group that received cells treated with Dex and antigen experienced a significant decrease in anti-RBC antibody titers. Additionally, there was a significant difference in the expression of cytokine genes and M2 differentiation markers among the groups that were evaluated. The effects of Dex on the viability and differentiation of monocytes depend on the dosage, timing, and duration of the treatment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15675769
Volume :
124
Database :
Academic Search Index
Journal :
International Immunopharmacology
Publication Type :
Academic Journal
Accession number :
172978299
Full Text :
https://doi.org/10.1016/j.intimp.2023.110826