Back to Search Start Over

Nanoflower-like high-entropy Ni–Fe–Cr–Mn–Co (oxy)hydroxides for oxygen evolution.

Authors :
Shi, Mingyuan
Tang, Tianmi
Xiao, Liyuan
Han, Jingyi
Bai, Xue
Sun, Yuhang
Chen, Siyu
Sun, Jingru
Ma, Yuanyuan
Guan, Jingqi
Source :
Chemical Communications. 10/14/2023, Vol. 59 Issue 80, p11971-11974. 4p.
Publication Year :
2023

Abstract

High-entropy materials (HEMs) have potential application value in electrocatalytic water splitting because of their unique alloy design concept and significant mixed entropy effect. Here, we synthesize a high-entropy Ni–Fe–Cr–Mn–Co (oxy)hydroxide on nickel foam (NF) by a solvothermal method. The flower-like structure of FeNiCrMnCoOOH/NF can provide abundant active sites, thus improving the oxygen evolution reaction (OER) activity. In 1 M KOH, the FeNiCrMnCoOOH/NF shows an ultra-low overpotential (η10) of 201 mV for the OER, superior to FeNiCrMnAlOOH/NF, FeNiCrMnCuOOH/NF, FeNiCrMnMoOOH/NF, and FeNiCrMnCeOOH/NF. In addition, it exhibits a low η10 of 223 mV in 0.5 M NaCl + 1 M KOH and excellent stability. Electrochemical impedance spectroscopy measurements indicate that the synergistic effect between multiple metals accelerates charge transfer, while in situ Raman measurements reveal that NiOOH is a key active species for the OER. This work is of great significance for the construction of high-entropy (oxy)hydroxides for seawater electrolysis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13597345
Volume :
59
Issue :
80
Database :
Academic Search Index
Journal :
Chemical Communications
Publication Type :
Academic Journal
Accession number :
172854040
Full Text :
https://doi.org/10.1039/d3cc04023b