Back to Search Start Over

Experimental determination of quartz solubility in H2O-CaCl2 solutions at 600–900 °C and 0.6–1.4 GPa.

Authors :
Makhluf, Adam R.
Newton, Robert C.
Manning, Craig E.
Source :
American Mineralogist. Oct2023, Vol. 108 Issue 10, p1852-1861. 10p.
Publication Year :
2023

Abstract

Fluid-mediated calcium metasomatism is often associated with strong silica mobility and the presence of chlorides in solution. To help quantify mass transfer at lower crustal and upper mantle conditions, we measured quartz solubility in H2O-CaCl2 solutions at 0.6–1.4 GPa, 600–900 °C, and salt concentrations to 50 mol%. Solubility was determined by weight loss of single-crystals using hydrothermal piston-cylinder methods. All experiments were conducted at salinity lower than salt saturation. Quartz solubility declines exponentially with added CaCl2 at all conditions investigated, with no evidence for complexing between silica and Ca. The decline in solubility is similar to that in H2O-CO2 but substantially greater than that in H2O-NaCl at the same pressure and temperature. At each temperature, quartz solubility at low salinity (XCaCl2 < 0.1) depends strongly on pressure, whereas at higher XCaCl2 it is nearly pressure independent. This behavior is consistent with a transition from an aqueous solvent to a molten salt near XCaCl2 ~0.1. The solubility data were used to develop a thermodynamic model of H2O-CaCl2 fluids. Assuming ideal molten-salt behavior and utilizing previous models for polymerization of hydrous silica, we derived values for the activity of H2O (aH2O), and for the CaCl2 dissociation factor (α), which may vary from 0 (fully associated) to 2 (fully dissociated). The model accurately reproduces our data along with those of previous work and implies that, at conditions of this study, CaCl2 is largely associated (<0.2) at H2O density <0.85 g/cm3. Dissociation rises isothermally with increasing density, reaching ~1.4 at 600 °C, 1.4 GPa. The variation in silica molality with aH2O in H2O-CaCl2 is nearly identical to that in H2O-CO2 solutions at 800 °C and 1.0 GPa, consistent with the absence of Ca-silicate complexing. The results suggest that the ionization state of the salt solution is an important determinant of aH2O, and that H2O-CaCl2 fluids exhibit nearly ideal molecular mixing over a wider range of conditions than implied by previous modeling. The new data help interpret natural examples of large-scale Ca-metasomatism in a wide range of lower crustal and upper mantle settings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0003004X
Volume :
108
Issue :
10
Database :
Academic Search Index
Journal :
American Mineralogist
Publication Type :
Academic Journal
Accession number :
172821126
Full Text :
https://doi.org/10.2138/am-2022-8387