Back to Search Start Over

γ-Aminobutyric Acid Priming Alleviates Acid-Aluminum Toxicity to Creeping Bentgrass by Regulating Metabolic Homeostasis.

Authors :
Zhou, Min
Yuan, Yan
Lin, Junnan
Lin, Long
Zhou, Jianzhen
Li, Zhou
Source :
International Journal of Molecular Sciences. Sep2023, Vol. 24 Issue 18, p14309. 16p.
Publication Year :
2023

Abstract

Aluminum (Al) toxicity is a major limiting factor for plant growth and crop production in acidic soils. This study aims to investigate the effects of γ-aminobutyric acid (GABA) priming on mitigating acid-Al toxicity to creeping bentgrass (Agrostis stolonifera) associated with changes in plant growth, photosynthetic parameters, antioxidant defense, key metabolites, and genes related to organic acids metabolism. Thirty-seven-old plants were primed with or without 0.5 mM GABA for three days and then subjected to acid-Al stress (5 mmol/L AlCl3·6H2O, pH 4.35) for fifteen days. The results showed that acid-Al stress significantly increased the accumulation of Al and also restricted aboveground and underground growths, photosynthesis, photochemical efficiency, and osmotic balance, which could be effectively alleviated by GABA priming. The application of GABA significantly activated antioxidant enzymes, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, to reduce oxidative damage to cells under acid-Al stress. Metabolomics analysis demonstrated that the GABA pretreatment significantly induced the accumulation of many metabolites such as quinic acid, pyruvic acid, shikimic acid, glycine, threonine, erythrose, glucose-6-phosphate, galactose, kestose, threitol, ribitol, glycerol, putrescine, galactinol, and myo-inositol associated with osmotic, antioxidant, and metabolic homeostases under acid-Al stress. In addition, the GABA priming significantly up-regulated genes related to the transportation of malic acid and citric acid in leaves in response to acid-Al stress. Current findings indicated GABA-induced tolerance to acid-Al stress in relation to scavenging of reactive oxygen species, osmotic adjustment, and accumulation and transport of organic metabolites in leaves. Exogenous GABA priming could improve the phytoremediation potential of perennial creeping bentgrass for the restoration of Al-contaminated soils. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
18
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
172424558
Full Text :
https://doi.org/10.3390/ijms241814309