Back to Search Start Over

Dual-functional single-atomic Mo/Fe clusters-decorated C3N5 via three electron-pathway in oxygen reduction reaction for tandemly removing contaminants from water.

Authors :
Chencheng Dong
Zhi-qiang Wang
Chao Yang
Xiaomeng Hu
Pei Wang
Xue-qing Gong
Lin Lin
Xiao-yan Li
Source :
Proceedings of the National Academy of Sciences of the United States of America. 9/26/2023, Vol. 120 Issue 39, p1-12. 51p.
Publication Year :
2023

Abstract

Inspired by the development of single-atom catalysts (SACs), the fabrication of multimetallic SACs can be a promising technical approach for the in situ electro-Fenton (EF) process. Herein, dual-functional atomically dispersed Mo-Fe sites embedded in carbon nitride (C3N5) (i.e., MoFe/C3N5) were synthesized via a facile SiO2 template method. The atomically isolated bimetallic configuration in MoFe/C3N5 was identified by combining the microscopic and spectroscopic techniques. The MoFe/C3N5 catalyst on the cathode exhibited a remarkable catalytic activity toward the three electron-dominated oxygen reduction reaction in sodium sulfate, leading to a highly effective EF reaction with a low overpotential for the removal of organic contaminants from wastewater. The new catalyst showed a superior performance over its conventional counterparts, owing to the dual functions of the dual-metal active sites. Density functional theory (DFT) analysis revealed that the dual-functional 50-MoFe/C3N5 catalyst enabled a synergistic action of the Mo-Fe dual single atomic centers, which can alter the adsorption/dissociation behavior and decrease the overall reaction barriers for effective organic oxidation during the EF process. This study not only sheds light on the controlled synthesis of atomically isolated catalyst materials but also provides deeper understanding of the structure-performance relationship of the nanocatalysts with dual active sites for the catalytic EF process. Additionally, the findings will promote the advanced catalysis for the treatment of emerging organic contaminants in water and wastewater. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
120
Issue :
39
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
172261618
Full Text :
https://doi.org/10.1073/pnas.2305883120