Back to Search Start Over

Investigation of energy recovery performance and frost risk of membrane enthalpy exchanger applied in cold climates.

Authors :
Li, Hao
Zhang, Tao
Zhang, Ji
Guan, Bowen
Liu, Xiaohua
Nakazawa, Takema
Fang, Lin
Tanaka, Toshio
Source :
Energy. Nov2023, Vol. 282, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

The membrane enthalpy exchanger (MEE) is a viable energy recovery device to alleviate building energy consumption. In this paper, a quasi-counter-flow MEE's energy-saving effect and frost risk under severe cold conditions is investigated experimentally and numerically. The experimental results demonstrate that frost occurs when the outdoor air temperature falls below −14 °C. At an outdoor temperature of −26 °C, the enthalpy effectiveness decreases from 63.8% to 43.3% after one hour of frosting, accompanied by a significant increase in the exhaust air's pressure drop by 2.7 times. Furthermore, the simulation results reveal that the lower latent effectiveness compared to sensible effectiveness contributes to the highest risk of saturation near the exhaust air outlet. Moreover, this study analyzes the influence of MEE's geometrical and physical characteristics on its recovery effectiveness and frost risk. The findings indicate that increasing the membrane spacing can prolong MEE's operation duration at the expense of recovery effectiveness. Specifically, the MEE's total energy recovery during the whole heating season in Shenyang, China, increases by 18% when the membrane spacing is extended from 2 mm to 5 mm with a membrane thickness of 70 μm. This study provides insights into the MEE design. • Membrane enthalpy exchanger has impressive total effectiveness higher than 60%. • Frost occurs in the exchanger when the outdoor air temperature is below −14 °C. • Frost formation causes surge of pressure drop and attenuation of effectiveness. • Higher resistance to moisture transfer than heat transfer aggravates the frost risk. • Optimizations of geometric and physical characteristics are discussed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03605442
Volume :
282
Database :
Academic Search Index
Journal :
Energy
Publication Type :
Academic Journal
Accession number :
172042845
Full Text :
https://doi.org/10.1016/j.energy.2023.128894