Back to Search
Start Over
Turán numbers T(n,5,3) $T(n,5,3)$ and graphs without induced 5‐cycles.
- Source :
-
Journal of Graph Theory . Nov2023, Vol. 104 Issue 3, p451-460. 10p. - Publication Year :
- 2023
-
Abstract
- The Turán number T(n,5,3) $T(n,5,3)$ is the minimum size of a system of triples out of a base set X $X$ of n $n$ elements such that every quintuple in X $X$ contains a triple from the system. The exact values of T(n,5,3) $T(n,5,3)$ are known for n≤17 $n\le 17$. Turán conjectured that T(2m,5,3)=2m3 $T(2m,5,3)=2\left(\genfrac{}{}{0.0pt}{}{m}{3}\right)$, and no counterexamples have been found so far. If this conjecture is true, then T(2m+1,5,3)≥⌈m(m−2)(2m+1)∕6⌉ $T(2m+1,5,3)\ge \lceil m(m-2)(2m+1)\unicode{x02215}6\rceil $. We prove the matching upper bound for all n=2m+1>17 $n=2m+1\gt 17$ except n=27 $n=27$. [ABSTRACT FROM AUTHOR]
- Subjects :
- *REGULAR graphs
*STEINER systems
*LOGICAL prediction
Subjects
Details
- Language :
- English
- ISSN :
- 03649024
- Volume :
- 104
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Journal of Graph Theory
- Publication Type :
- Academic Journal
- Accession number :
- 172000201
- Full Text :
- https://doi.org/10.1002/jgt.23021