Back to Search
Start Over
A Radical Pathway and Stabilized Li Anode Enabled by Halide Quaternary Ammonium Electrolyte Additives for Lithium‐Sulfur Batteries.
- Source :
-
Angewandte Chemie International Edition . 9/18/2023, Vol. 62 Issue 38, p1-12. 12p. - Publication Year :
- 2023
-
Abstract
- Passivation of the sulfur cathode by insulating lithium sulfide restricts the reversibility and sulfur utilization of Li−S batteries. 3D nucleation of Li2S enabled by radical conversion may significantly boost the redox kinetics. Electrolytes with high donor number (DN) solvents allow for tri‐sulfur (S3⋅−) radicals as intermediates, however, the catastrophic reactivity of such solvents with Li anodes pose a great challenge for their practical application. Here, we propose the use of quaternary ammonium salts as electrolyte additives, which can preserve the partial high‐DN characteristics that trigger the S3⋅− radical pathway, and inhibit the growth of Li dendrites. Li−S batteries with tetrapropylammonium bromide (T3Br) electrolyte additive deliver the outstanding cycling stability (700 cycles at 1 C with a low‐capacity decay rate of 0.049 % per cycle), and high capacity under a lean electrolyte of 5 μLelectrolyte mgsulfur−1. This work opens a new avenue for the development of electrolyte additives for Li−S batteries. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14337851
- Volume :
- 62
- Issue :
- 38
- Database :
- Academic Search Index
- Journal :
- Angewandte Chemie International Edition
- Publication Type :
- Academic Journal
- Accession number :
- 171961358
- Full Text :
- https://doi.org/10.1002/anie.202309046