Back to Search Start Over

Keeping it simple: simplified frameworks for long-lived particles at neutrino facilities.

Authors :
Batell, Brian
Huang, Wenjie
Kelly, Kevin J.
Source :
Journal of High Energy Physics. Aug2023, Vol. 2023 Issue 8, p1-29. 29p.
Publication Year :
2023

Abstract

Modern-day accelerator neutrino facilities are excellent venues for searches for new-physics particles. Many distinct new-physics models predict overlapping signatures and phenomenology in these experiments. In this work, we advocate for the adoption of simplified frameworks when studying these types of new-physics signatures, which are characterized by a small number of primary variables, including particle masses, lifetimes, and production and decay modes/rates that most directly control signal event rates and kinematics. In particular, taking the example of long-lived particles that decay inside a neutrino detector as a test case, we study formulate and study simplified frameworks in the context of light scalars/fermions produced in kaon decays which then decay into final states containing an electron-positron pair. We show that using these simplified frameworks can allow for individual experimental analyses to be applicable to a wide variety of specific model scenarios. As a side benefit, we demonstrate that using this approach can allow for the T2K collaboration, by reinterpreting its search for Heavy Neutral Leptons, to be capable of setting world-leading limits on the Higgs-Portal Scalar model. Furthermore, we argue the simplified framework interpretation can serve as a bridge to model identification in the hopeful detection of a new-physics signal. As an illustration, we perform a first determination of the likelihood that, in the presence of a new-physics signal in a detector like the DUNE ND-GAr, multiple different new-physics hypotheses (such as the Higgs-Portal Scalar and Heavy Neutral Lepton ones) can be disentangled. We demonstrate that this model discrimination is favorable for some portions of detectable new-physics parameter space but for others, it is more challenging. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
11266708
Volume :
2023
Issue :
8
Database :
Academic Search Index
Journal :
Journal of High Energy Physics
Publication Type :
Academic Journal
Accession number :
171892429
Full Text :
https://doi.org/10.1007/JHEP08(2023)092