Back to Search Start Over

Effect of Drying Control Agent on Physicochemical and Thermal Properties of Silica Aerogel Derived via Ambient Pressure Drying Process.

Authors :
Pawlik, Natalia
Szpikowska-Sroka, Barbara
Miros, Artur
Psiuk, Bronisław
Ślosarczyk, Agnieszka
Source :
Energies (19961073). Sep2023, Vol. 16 Issue 17, p6244. 16p.
Publication Year :
2023

Abstract

This paper presents the effect of drying control agents on the physicochemical and thermal properties of hydrophobic silica aerogels derived via the ambient pressure drying (APD) method by a surface silylation using a TMCS/n-hexane mixture. The structural and physicochemical properties of synthesized DMF-modified and unmodified hydrophobic silica aerogels were characterized using Brunauer–Emmett–Teller (BET) analysis, thermo-gravimetric analysis, FT-IR, and Raman spectroscopic techniques. Based on the obtained results, the differences in structure between samples before and after a surface silylation and the effect of drying control agents were documented. The structural measurements confirmed the efficient silylation process (TMCS/n-hexane), as well as the presence of DMF residues of hydrogen bonded with unreacted Si-OH silanol groups within the silica backbone after surface modification. Based on TG analysis, it was found that DMF addition improves thermal resistance (up to 320 °C) and hydrophobic character of prepared aerogel. Modification of the silica aerogel synthesis process by DMF also resulted in a significant increase in BET—the specific surface area, for the unmodified aerogel was ~828 m2/g, and for the DMF-modified aerogel more than 1200 m2/g—much higher than the value of silica aerogels available on the market. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
16
Issue :
17
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
171858506
Full Text :
https://doi.org/10.3390/en16176244