Back to Search Start Over

Configurable Encryption and Decryption Architectures for CKKS-Based Homomorphic Encryption.

Authors :
Lee, Jaehyeok
Duong, Phap Ngoc
Lee, Hanho
Source :
Sensors (14248220). Sep2023, Vol. 23 Issue 17, p7389. 13p.
Publication Year :
2023

Abstract

With the increasing number of edge devices connecting to the cloud for storage and analysis, concerns about security and data privacy have become more prominent. Homomorphic encryption (HE) provides a promising solution by not only preserving data privacy but also enabling meaningful computations on encrypted data; while considerable efforts have been devoted to accelerating expensive homomorphic evaluation in the cloud, little attention has been paid to optimizing encryption and decryption (ENC-DEC) operations on the edge. In this paper, we propose efficient hardware architectures for CKKS-based ENC-DEC accelerators to facilitate computations on the client side. The proposed architectures are configurable to support a wide range of polynomial sizes with multiplicative depths (up to 30 levels) at a 128-bit security guarantee. We evaluate the hardware designs on the Xilinx XCU250 FPGA platform and achieve an average encryption time 23.7× faster than that of the well-known SEAL HE library. By reducing time complexity and improving the hardware utilization of cryptographic algorithms, our configurable CKKS-supported ENC-DEC hardware designs have the potential to greatly accelerate cryptographic processes on the client side in the post-quantum era. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
17
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
171855687
Full Text :
https://doi.org/10.3390/s23177389