Back to Search Start Over

Frequency Increment Design Method of MR-FDA-MIMO Radar for Interference Suppression.

Authors :
Wu, Zhixia
Zhu, Shengqi
Xu, Jingwei
Lan, Lan
Li, Ximin
Zhang, Yiqun
Source :
Remote Sensing. Aug2023, Vol. 15 Issue 16, p4070. 18p.
Publication Year :
2023

Abstract

In the present complex electromagnetic environment, radar target detection is threatened by different kinds of interferences, especially mainlobe deceptive interference, which occupies the same energy distributions of targets spatially, meaning that targets and interferences cannot be discriminated. To make matters worse, the number of suppressible interferences is limited by the number of physical array elements, leading to the degradation of the suppression performance of traditional radar. In this work, we propose a frequency-increment-based interference suppression method for minimum redundancy frequency diverse array multiple-input multiple-output (MR-FDA-MIMO) radar, which effectively solves the aforementioned two problems. The interference suppression method consists of two steps: (i) in the sidelobe barrage interference suppression stage, the interference-plus-noise covariance matrix is reconstructed to overcome the influence of the true targets and mainlobe deceptive interference on the performance of the beamformer; (ii) in the mainlobe deceptive interference suppression stage, a nonadaptive beamforming method is employed to suppress mainlobe deceptive interference and overcome the impact of insufficient virtual samples on interference suppression performance. Additionally, we design a frequency-increment-based MR-FDA-MIMO radar, fully utilizing the advantages of the virtual array to enhance interference suppression performance and increase the number of interferences. Numerical experiments undertaken demonstrate the effectiveness of the algorithm under different scenarios. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
16
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
170909318
Full Text :
https://doi.org/10.3390/rs15164070