Back to Search Start Over

Clockwise evolution in the hardness–intensity diagram of the black hole X-ray binary Swift J1910.2−0546.

Authors :
Saikia, Payaswini
Russell, David M
Pirbhoy, Saarah F
Baglio, M C
Bramich, D M
Alabarta, Kevin
Lewis, Fraser
Charles, Phil
Source :
Monthly Notices of the Royal Astronomical Society. Sep2023, Vol. 524 Issue 3, p4543-4553. 11p.
Publication Year :
2023

Abstract

We present a detailed study of optical data from the 2012 outburst of the candidate black hole X-ray binary Swift J1910.2−0546 using the Faulkes Telescope and Las Cumbres Observatory (LCO). We analyse the peculiar spectral state changes of Swift J1910.2−0546 in different energy bands, and characterize how the optical and UV emission correlates with the unusual spectral state evolution. Using various diagnostic tools like the optical/X-ray correlation and spectral energy distributions, we disentangle the different emission processes contributing towards the optical flux of the system. When Swift J1910.2−0546 transitions to the pure hard state, we find significant optical brightening of the source along with a dramatic change in the optical colour due to the onset of a jet during the spectral state transition. For the rest of the spectral states, the optical/UV emission is mostly dominated by an X-ray irradiated disc. From our high cadence optical study, we have discovered a putative modulation. Assuming that this modulation arises from a superhump, we suggest Swift J1910.2−0546 to have an orbital period of 2.25–2.47 h, which would make it the shortest orbital period black hole X-ray binary known to date. Finally, from the state transition luminosity of the source, we find that the distance to the source is likely to be ∼4.5–20.8 kpc, which is also supported by the comparative position of the source in the global optical/X-ray correlation of a large sample of black hole and neutron star X-ray binaries. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00358711
Volume :
524
Issue :
3
Database :
Academic Search Index
Journal :
Monthly Notices of the Royal Astronomical Society
Publication Type :
Academic Journal
Accession number :
170902652
Full Text :
https://doi.org/10.1093/mnras/stad2044