Back to Search Start Over

Quality Assessment of Processed Graphene Chips for Biosensor Application.

Authors :
Shmidt, Natalia M.
Shabunina, Evgeniya I.
Gushchina, Ekaterina V.
Petrov, Vasiliy N.
Eliseyev, Ilya A.
Lebedev, Sergey P.
Priobrazhenskii, Sergei Iu.
Tanklevskaya, Elena M.
Puzyk, Mikhail V.
Roenkov, Alexander D.
Usikov, Alexander S.
Lebedev, Alexander A.
Source :
Materials (1996-1944). Aug2023, Vol. 16 Issue 16, p5628. 10p.
Publication Year :
2023

Abstract

The quality of graphene intended for use in biosensors was assessed on manufactured chips using a set of methods including atomic force microscopy (AFM), Raman spectroscopy, and low-frequency noise investigation. It is shown that local areas of residues on the graphene surface, formed as a result of the interaction of graphene with a photoresist at the initial stage of chip development, led to a spread of chip resistance (R) in the range of 1–10 kOhm and to an increase in the root mean square (RMS) roughness up to 10 times, which can significantly worsen the reproducibility of the parameters of graphene chips for biosensor applications. It was observed that the control of the photoresist residues after photolithography (PLG) using AFM and subsequent additional cleaning reduced the spread of R values in chips to 1–1.6 kOhm and obtained an RMS roughness similar to the roughness in the graphene film before PLG. Monitoring of the spectral density of low-frequency voltage fluctuation (SU), which provides integral information about the system of defects and quality of the material, makes it possible to identify chips with low graphene quality and with inhomogeneously distributed areas of compressive stresses by the type of frequency dependence SU(f). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
16
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
170743703
Full Text :
https://doi.org/10.3390/ma16165628