Back to Search Start Over

A Deconvolutional Reconstruction Method Based on Lucy–Richardson Algorithm for Joint Scanning Laser Thermography.

Authors :
He, Zhiyi
Wang, Hongjin
Li, Yiwen
Zhang, Zhenjun
Zhang, Yudong
Bi, Hanbo
He, Yunze
Source :
IEEE Transactions on Instrumentation & Measurement. 2021, Vol. 70, p1-8. 8p.
Publication Year :
2021

Abstract

Joint scanning laser thermography (JLST) is well-known for its efficiency to overcome the field of view (FOV) limitation of thermal imagers. However, JSLT requires a data reconstruction to reveal the location of the defective area straightforwardly. Moreover, its detection capacity is limited by the lack of a deconvolution algorithm adaptive to the reconstructed data. In this study, a deconvolutional reconstruction method based on the Lucy–Richardson (LR) algorithm has been developed for JST, which is effective in suppressing random noise and the blur effect caused by the thermal diffusion. A JSLT inspection is carried out on a functional coating material with cylinder-like defects to test the performance of the proposed method. In comparison to the directly processed method on the original data, the proposed method is processed on the reconstructed data and then compared with principal component analysis (PCA), restored pseudo heat flux (RPHF), fast Fourier transform (FFT) methods and non-negative matrix factorization (NMF). The experimental results indicated that our proposed LR method exhibited a higher signal-to-noise ratio. Besides, it can detect the cylinder-mocked debonding defects with a diameter of 1.5 mm and a depth of 2.0 mm buried under the 1.0-mm coating. In addition, the defect detection diameter-to-depth ratio reached 1.5, while the defect detection rate of the test specimens can approach 90%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189456
Volume :
70
Database :
Academic Search Index
Journal :
IEEE Transactions on Instrumentation & Measurement
Publication Type :
Academic Journal
Accession number :
170414922
Full Text :
https://doi.org/10.1109/TIM.2020.3034967