Back to Search Start Over

High-Accuracy and Fast Measurement of Optical Transfer Delay.

Authors :
Li, Shupeng
Qing, Ting
Fu, Jianbin
Wang, Xiangchuan
Pan, Shilong
Source :
IEEE Transactions on Instrumentation & Measurement. 2021, Vol. 70, p1-4. 4p.
Publication Year :
2021

Abstract

Measurement of optical transfer delay (OTD) is crucial to applications such as fiber-distributed multiantenna systems, fiber-optic sensors, and high-capacity optical fiber communications. However, present OTD measurement techniques are inadequate for the demands of high accuracy, high speed, and large measurement range, simultaneously. Here, we propose a novel method based on nonlinear frequency sweeping and phase derived ranging to achieve all the above-mentioned performance. A continuous-wave light modulated by a microwave signal propagates in a device under test. Then, the OTD is mapped into the phase variation of the microwave signal by photodetection. A microwave phase discriminator is used to extract the phase variation from the microwave signal, while the nonlinear frequency sweeping and a novel phase unwrapping algorithm are proposed to resolve $2\pi $ phase ambiguity caused by phase detection. Frequencies of the microwave swept signals are set at four selected points in a range of 10 MHz, which ensures high speed and large measurement range. Our experiment results verify an accuracy of ±0.05 ps in measuring an ultrahigh-accuracy optical delay line. In addition, long fiber is also tested, which proves that a measurement range of at least 37 km (theoretically 100 km) can be achieved. Moreover, the measurement speed reaches milliseconds per measurement. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189456
Volume :
70
Database :
Academic Search Index
Journal :
IEEE Transactions on Instrumentation & Measurement
Publication Type :
Academic Journal
Accession number :
170414791
Full Text :
https://doi.org/10.1109/TIM.2020.3011585