Back to Search Start Over

Endoplasmic reticulum stress-responsive microRNAs are involved in the regulation of abiotic stresses in wheat.

Authors :
Chen, Yong
Yu, Xing
Source :
Plant Cell Reports. Sep2023, Vol. 42 Issue 9, p1433-1452. 20p.
Publication Year :
2023

Abstract

Key message: ER stress-responsive miRNAs, tae-miR164, tae-miR2916, and tae-miR396e-5p, are essential in response to abiotic stress. Investigating ER stress-responsive miRNAs is necessary to improve plant tolerance to environmental stress. MicroRNAs (miRNAs) play vital regulatory roles in plant responses to environmental stress. Recently, the endoplasmic reticulum (ER) stress pathway, an essential signalling pathway in plants in response to adverse conditions, has been widely studied in model plants. However, miRNAs associated with ER stress response remain largely unknown. Using high-throughput sequencing, three ER stress-responsive miRNAs, tae-miR164, tae-miR2916, and tae-miR396e-5p were identified, and their target genes were confirmed. These three miRNAs and their target genes actively responded to dithiothreitol, polyethylene glycol, salt, heat, and cold stresses. Furthermore, in some instances, the expression patterns of the miRNAs and their corresponding target genes were contrasting. Knockdown of tae-miR164, tae-miR2916, or tae-miR396e-5p using a barley stripe mosaic virus-based miRNA silencing system substantially enhanced the tolerance of wheat plants to drought, salt, and heat stress. Under conditions involving these stresses, inhibiting the miR164 function by using the short tandem target mimic approach in Arabidopsis thaliana resulted in phenotypes consistent with those of miR164-silenced wheat plants. Correspondingly, overexpression of tae-miR164 in Arabidopsis resulted in a decreased tolerance to drought stress and, to some extent, a decrease in tolerance to salt and high temperature. These results revealed that tae-miR164 plays a negative regulatory role in wheat/Arabidopsis in response to drought, salt, and heat stress. Taken together, our study provides new insights into the regulatory role of ER stress-responsive miRNAs in abiotic stress responses. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07217714
Volume :
42
Issue :
9
Database :
Academic Search Index
Journal :
Plant Cell Reports
Publication Type :
Academic Journal
Accession number :
170082480
Full Text :
https://doi.org/10.1007/s00299-023-03040-7